Algebraic Number Theory Exercise Sheet 8

Prof. Dr. Nikita Geldhauser	Winter Semester 2024-25
PD Dr. Maksim Zhykhovich	10.12.2024

Exercise 1. Recall that a subset $X \subseteq \mathbb{R}^n$ is said to be *discrete*, if $X \cap B$ is finite for every compact $B \subseteq \mathbb{R}^n$.

(1) Let $X \subseteq \mathbb{R}^n$ be a discrete subset. Show that the induced topology on X is discrete.

(2) Let X be an additive subgroup of \mathbb{R}^n , such that the induced topology on X is discrete. Show that $X \subseteq \mathbb{R}^n$ is a discrete subset.

Exercise 2. Let d be a square-free positive integer, $d \not\equiv 1 \mod 4$. Let $K = \mathbb{Q}(\sqrt{d})$ be a quadratic field.

(1) Find r_2 and d_K . Compute $2^{-r_2} |d_K|^{1/2}$.

(2) Let L be the lattice in \mathbb{R}^2 generated by (1,1) and $(\sqrt{d}, -\sqrt{d})$. Compute explicitly the volume of L.

(3) Compare results in (1) and (2) and give an explanation.

Exercise 3. Let K be a number field and let A be the ring of integers of K. Let I, J be fractional ideals in $\mathcal{F}(A)$. Show that N(IJ) = N(I)N(J). *Hint:* Reduce the problem to the case where I and J are ideals in A and I is prime.

Exercise 4. Let K be a number field and let A be the ring of integers of K. Let ρ be a prime ideal in $\mathcal{F}(A)$. Show that $N(\rho)$ is a power of a prime number in \mathbb{Z} .